a((oneer

A121 Distance Detector

User Guide

((O
A121 Distance Detector

A121 Distance Detector
User Guide

Author: Acconeer AB
Version:al21-v1.3.0

Acconeer AB October 6, 2023

© 2023 by Acconeer AB - All rights reserved Page 2 of 11

A121 Distance Detector

Contents

S

1 Acconeer SDK Documentation Overview

2 Distance detection
2.1 Introduction e e e e e e e e
2.2 Distance filter L e e e e e e e e e e
2.3 SUDSWEEDS . . ¢ o v e e e e e e e e
2.4 Thresholds. e e e
2.5 Reflectorshape L
2.6 Peaksorting e
2.7 Detector calibration L. e e e e e e e e e e e e e
2.8 Detector recalibration e e e e e e e e e e
2.9 Temperature COMpPENsation i e e e e e e e e e

BN e Wie Ne Ne WU, SRV, RV, I3 |

3 CAPI
3.1 Calibration e
3.2 ProCess o i e e e e e e
33 MEMOTY . . . ¢ o o e e e e e e e e
34 Power ConsSumption o oot vt e e e e e e e

O o0 o o 00

4 Configuration Parameters 10

5 Disclaimer 11

© 2023 by Acconeer AB - All rights reserved Page 3 of 11

A121 Distance Detector

1 Acconeer SDK Documentation Overview

To better understand what SDK document to use, a summary of the documents are shown in the table below.

Table 1: SDK document overview.

Name | Description | When to use
RSS API documentation (html)
rss_api The complete C API documentation. - RSS application implementation

- Understanding RSS API functions

User guides (PDF)

A121 Assembly Test

Describes the Acconeer assembly
test functionality.

- Bring-up of HW/SW
- Production test implementation

A121 Breathing
Reference Application

Describes the functionality of the
Breathing Reference Application.

- Working with the Breathing
Reference Application

A121 Distance Detector

Describes usage and algorithms
of the Distance Detector.

- Working with the Distance Detector

A121 SW Integration

Describes how to implement each
integration function needed to use
the Acconeer sensor.

- SW implementation of
custom HW integration

A121 Presence Detector

Describes usage and algorithms
of the Presence Detector.

- Working with the Presence Detector

A121 Smart Presence
Reference Application

Describes the functionality of the

Smart Presence Reference Application.

- Working with the Smart Presence
Reference Application

A121 Sparse 1Q Service

Describes usage of the Sparse 1Q
Service.

- Working with the Sparse IQ Service

A121 Tank Level
Reference Application

Describes the functionality of the
Tank Level Reference Application.

- Working with the Tank Level
Reference Application

A121 STM32CubelDE

Describes the flow of taking an
Acconeer SDK and integrate into
STM32CubelDE.

- Using STM32CubelDE

A121 Raspberry Pi Software

Describes how to develop for
Raspberry Pi.

- Working with Raspberry Pi

. Describes how to develop for - Working with Ripple
Al21 Ripple Ripple. on Raspberry Pi
XM125 Software Describes how to develop for - Working with XM125
XM125.
. Describes the functionality of the - Working with the
I2€ Distance Detector 12C Distance Detector Application. 12C Distance Detector Application
Describes the functionality of the - Working with the

12C Presence Detector

12C Presence Detector Application.

I2C Presence Detector Application

Handbook (PDF)

Describes different aspects of the

- To understand the Acconeer sensor

Handbook Acconeer offer, for example radar .
.. - Use case evaluation
principles and how to configure
Readme (txt)
[README Various target specific information _ After SDK download

and links

© 2023 by Acconeer AB - All rights reserved

Page 4 of 11

A121 Distance Detector

2 Distance detection

2.1 Introduction

The purpose of the distance detector is to detect objects and estimate their distance from the sensor. The algorithm is built
on top of the Sparse IQ service and has various configuration parameters available to tailor the detector to specific use
cases. The detector utilizes the following key concepts:

1. Distance filtering: A matched filter is applied along the distance dimension to improve the signal quality and suppress
noise.

2. Subsweeps: The measured range is split into multiple subsweeps, each configured to maintain SNR throughout the
sweep while minimizing power consumption.

3. Comparing sweep to a threshold: Peaks in the filtered sweep are identified by comparison to one of three available
threshold methods.

4. Estimate distance to object: Estimate the distance to the target by interpolation of the peak and neighboring
amplitudes.

5. Sort found peaks: If multiple peaks are found in a sweep, three different sorting methods can be employed, each
suitable for different use-cases.

2.2 Distance filter

As the sensor produce coherent data, samples corresponding to the location of an object will have similar phase, while
the phase of free-air measurements will be random. By applying a filter in the distance domain, the noise in the free-air
regions will be suppressed, resulting in an improved SNR.

The filter is automatically configured based on the detector configuration as a second order Butterworth filter with a cutoff
frequency corresponding to a matched filter.

2.3 Subsweeps

The measurement range is split up into multiple subsweeps to allow for optimization of power consumption and signal
quality. The profile, HWAAS and step length are automatically assigned per subsweep, based on the detector config.

* A shorter profile is selected at the start of the measurement range to minimize the interference with direct leakage,
followed by longer profiles to gain SNR. The longest profile used can be limited by setting the parameter
maz_profile. If no profile is specified, the subsweeps will be configured to transfer to the longest profile(without
interference from direct leakage) as quickly as possible to maximize SNR. Longer profiles yield a higher SNR at a
given power consumtion level, while shorter profiles gives better depth resolution.

* The step length can also be limited by setting the parameter maz_step_length. If no value is supplied, the step
length is automatically configured to appropriate size, maintaining good depth resolution while minimizing power
consumption. Note, the algorithm interpolates between the measured points to maintain good resolution, even with
a more coarse step length.

* HWAAS is assigned to each subsweep in order to maintain SNR throughout the measured range as the signal
strength decrease with the distance between the sensor and the measured target. The target SNR level is adjusted
using the parameter signal_quality.

Note, higher signal quality will increase power consumption and measurement time.

The expected reflector shape is considered when assigning HWAAS to the subsweeps. For planar reflectors, such
as fluid surfaces, select PLANAR . For all other reflectors, select GENERIC .

In the Exploration Tool GUI, the subsweeps can be seen as slightly overlapping lines. If the measured object is in the
overlapping region, the result from the neighboring segments is averaged together.

© 2023 by Acconeer AB - All rights reserved Page 5 of 11

A121 Distance Detector

2.4 Thresholds

To determine if any objects are present, the sweep is compared to a threshold. Three different thresholds can be employed,
each suitable for different use-cases.

Fixed threshold The simplest approach to setting the threshold is choosing a fixed threshold over the full range.

Recorded threshold In situations where stationary objects are present, the background signal is not flat. To isolate
objects of interest, the threshold is based on measurements of the static environment. The first step is to collect
multiple sweeps, from which the mean sweep and standard deviation is calculated. Secondly, the threshold is formed
by adding a number of standard deviations (the number is determined by the parameter threshold_sensitivity)
to the mean sweep.

Constant False Alarm Rate (CFAR) threshold (default) A final method to construct a threshold for a certain distance
is to use the signal from neighbouring distances of the same sweep. This requires that the object gives rise to a
single strong peak, such as a fluid surface and not, for example, the level in a large waste container. The main
advantage is that the memory consumption is minimal.

2.5 Reflector shape

The expected reflector shape is considered when assigning HWAAS to the subsweeps and during peak sorting.
The reflector shape is set through the detector configuration parameter reflector_shape.

For a planar reflector, such as a fluid surface, select PLANAR . For all other reflectors, select GENERIC .

2.6 Peak sorting

Multiple objects in the scene will give rise to several peaks. Peak sorting allows selection of which peak is of highest
importance.

The peak sorting strategy is set through PeakSortingMethod, which is part of the detector configuration.
The following peak sorting options are available.

Closest This method sorts the peaks according to distance from the sensor.

Strongest (default) This method sorts the peaks according to their relative strength.

Note, the reflector shape is considered when calculating each peak’s strength. The reflector shape is selected through
detector configuration parameter reflector_shape.

2.7 Detector calibration

For optimal performance, the detector performs a number of calibration steps. The following section outlines the purpose
and process of each step. Note, which of the following calibration procedures to perform is determined by the user
provided detector config. For instance, the close range measurement is only performed when measuring close to the
Sensor.

To trigger the calibration process in the Exploration Tool gui, simply press the button labeled “Calibrate detector”. If you
are running the detector from a script, the calibration is performed by calling the method calibrate_detector.

Noise level estimation The noise level is estimated by disabling of the transmitting antenna and just sample the
background noise with the receiving antenna.

Offset compensation The purpose of the offset compensation is to improve the distance trueness(average error) of the
distance detector. The compensation utilize the loopback measurement, where the pulse is measured electronically
on the chip, without transmitting it into the air. The location of the peak amplitude is correlated with the distance
error and used to correct the distance raw estimate.

Close range measurement calibration Measuring the distance to objects close to the sensor is challenging due to the
presence of strong direct leakage. One way to get around this is to characterize the leakage component and then
subtract it from each measurement to isolate the signal component. This is exactly what the close range calibration
does. While performing the calibration, it is important that the sensor is installed in its intended geometry and that
there is no object in front of the sensor as this would interfer with the direct leakage.

© 2023 by Acconeer AB - All rights reserved Page 6 of 11

A121 Distance Detector

Note, this calibration is only performed if close range measurement is active, given by the configured starting point.

Recorded threshold The recorded threshold is also recorded as a part of the detector calibration. Note, this calibration
is only performed if the detector is configured to used recorded threshold or if close range measurement is active,
where recorded threshold is used.

2.8 Detector recalibration

To maintain optimal performance, the sensor should be recalibrated if sensor_calibration_needed is set to True. A
sensor calibration should be followed by a detector recalibration, performed by calling recalibrate_detector.

The detector recalibration carries out a subset of the calibration steps. All the calibration steps performed are agnostic to
its surroundings and can be done at any time without considerations to the environment.

2.9 Temperature compensation

The surrounding temperature impacts the amplitude of the measured signal and noise. To compensate for these effects,
the recorded threshold has a built in compensation model, based on a temperature measurement, internal to the sensor.
Note, the effectiveness of the compensation is limited when measuring in the close range region.

© 2023 by Acconeer AB - All rights reserved Page 7 of 11

A121 Distance Detector

3 CAPI

The focus of this section is the Distance Detector C API.

It is recommended to read this section together with example_detector_distance.c located in the SDK package. The full
API specification, rss_api.html, provided in the SDK package is also good to read.

The Distance Detector utilizes one or more sensor configurations to cover the full configured range. This will result in
multiple sensor measurements for one detector result. Thereby, multiple detector functions are called in a while loop
waiting for a sensor interrupt for each iteration.

An example of how to use the API is provided in the SDK: example_detector_distance.c

3.1 Calibration

The detector calibration should be performed after the sensor calibration. It is important that only static objects, which
are always present in the measurement range, are present in front of the sensor when performing a detector calibration.
Objects present in front of the sensor during detector calibration might not be detected during normal operation. The
calibration function handles all sensor communication within the detector, except for waiting for sensor interrupt. The
calibration is performed in multiple steps using multiple sensor configurations and therefore the function needs to be
called in a while loop until complete.

Recalibration
If the sensor is recalibrated after the initial detector calibration, recalibration of the detector must also be performed.
A detector recalibration is a subset of a full calibration. The detector recalibration can be performed regardless of the

environment, i.e. objects within the measurement range during recalibration will still be detected after a recalibration.
The usage of this function is similar to the usage of the calibration function.

3.2 Process
Depending on the configuration the Distance Detector will use one or more sensor configurations resulting in one or
more sensor measurements for each detector measurement. The process function also requires a specific call chain to be

performed for one sensor measurement. This call chain should be performed within a while loop to cover all possible
sensor measurements.

Sparse 1Q Data
As part of the distance result struct there is a member called processing_result which contains the underlying Sparse 1Q

data used to calculate the distance result. The processing_result will be updated each time the
acc_detector_distance_process function is called.

3.3 Memory
Flash

The example application compiled from example_detector_distance.c on the XM125 module requires around 90 kB.

© 2023 by Acconeer AB - All rights reserved Page 8 of 11

A121 Distance Detector

RAM

The RAM can be divided into three categories, static RAM, heap, and stack. Below is a table for approximate RAM for
an application compiled from example_detector_distance.c.

RAM Size (kB)

Static 1.0
Heap 15.0
Stack 3.3
Total 19.3

Note that the heap is very dependent on the configuration. The configurations that have the largest impact on the memory
are start_m, end_m, step_length and threshold_method.

3.4 Power Consumption

The example application compiled from example_detector_distance_low_power_off.c on the XM125 module has an
average current of 0.27 mA.

© 2023 by Acconeer AB - All rights reserved Page 9 of 11

((O
A121 Distance Detector

4 Configuration Parameters

Table 3: Distance Detector Configuration Parameters

Name Type Default Value | Min Max
sensor sensorid | 1 n/a n/a
start_m float 0.25 0.0 <end_m
end_m float 3.0 > start_m | 23.0
max_step_length uintl6_ t | O

max_profile enum profile_5 profile_1 profile_5
signal_quality float 15.0 -10.0 35.0
threshold_method enum cfar

peak_sorting_method enum strongest

reflector_shape enum generic
num_frames_in_recorded_threshold | uintl6_t | 100

fixed_amplitude_threshold_value float 100.0

fixed_strength_threshold_value float 0.0

threshold_sensitivity float 0.5 0.0 1.0
close_range_leakage_cancellation bool true n/a n/a

© 2023 by Acconeer AB - All rights reserved Page 10 of 11

<(O
A121 Distance Detector

5 Disclaimer

The information herein is believed to be correct as of the date issued. Acconeer AB (“Acconeer”) will not be responsible
for damages of any nature resulting from the use or reliance upon the information contained herein. Acconeer makes no
warranties, expressed or implied, of merchantability or fitness for a particular purpose or course of performance or usage
of trade. Therefore, it is the user’s responsibility to thoroughly test the product in their particular application to
determine its performance, efficacy and safety. Users should obtain the latest relevant information before placing orders.

Unless Acconeer has explicitly designated an individual Acconeer product as meeting the requirement of a particular
industry standard, Acconeer is not responsible for any failure to meet such industry standard requirements.

Unless explicitly stated herein this document Acconeer has not performed any regulatory conformity test. It is the user’s
responsibility to assure that necessary regulatory conditions are met and approvals have been obtained when using the
product. Regardless of whether the product has passed any conformity test, this document does not constitute any
regulatory approval of the user’s product or application using Acconeer’s product.

Nothing contained herein is to be considered as permission or a recommendation to infringe any patent or any other
intellectual property right. No license, express or implied, to any intellectual property right is granted by Acconeer

herein.

Acconeer reserves the right to at any time correct, change, amend, enhance, modify, and improve this document and/or
Acconeer products without notice.

This document supersedes and replaces all information supplied prior to the publication hereof.

a(c)neer

© 2023 by Acconeer AB - All rights reserved Page 11 of 11

	Acconeer SDK Documentation Overview
	Distance detection
	Introduction
	Distance filter
	Subsweeps
	Thresholds
	Reflector shape
	Peak sorting
	Detector calibration
	Detector recalibration
	Temperature compensation

	C API
	Calibration
	Recalibration

	Process
	Sparse IQ Data

	Memory
	Flash
	RAM

	Power Consumption

	Configuration Parameters
	Disclaimer

